15 research outputs found

    Unsupervised Learning with Self-Organizing Spiking Neural Networks

    Full text link
    We present a system comprising a hybridization of self-organized map (SOM) properties with spiking neural networks (SNNs) that retain many of the features of SOMs. Networks are trained in an unsupervised manner to learn a self-organized lattice of filters via excitatory-inhibitory interactions among populations of neurons. We develop and test various inhibition strategies, such as growing with inter-neuron distance and two distinct levels of inhibition. The quality of the unsupervised learning algorithm is evaluated using examples with known labels. Several biologically-inspired classification tools are proposed and compared, including population-level confidence rating, and n-grams using spike motif algorithm. Using the optimal choice of parameters, our approach produces improvements over state-of-art spiking neural networks

    Control flow in active inference systems Part I: Classical and quantum formulations of active inference

    Get PDF
    Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. In this Part I, we introduce the free-energy principle (FEP) and the idea of active inference as Bayesian prediction-error minimization, and show how the control problem arises in active inference systems. We then review classical and quantum formulations of the FEP, with the former being the classical limit of the latter. In the accompanying Part II, we show that when systems are described as executing active inference driven by the FEP, their control flow systems can always be represented as tensor networks (TNs). We show how TNs as control systems can be implemented within the general framework of quantum topological neural networks, and discuss the implications of these results for modeling biological systems at multiple scales

    Control flow in active inference systems Part II: Tensor networks as general models of control flow

    Get PDF
    Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. In Part I, we introduced the free-energy principle (FEP) and the idea of active inference as Bayesian prediction-error minimization, and show how the control problem arises in active inference systems. We then review classical and quantum formulations of the FEP, with the former being the classical limit of the latter. In this accompanying Part II, we show that when systems are described as executing active inference driven by the FEP, their control flow systems can always be represented as tensor networks (TNs). We show how TNs as control systems can be implemented within the general framework of quantum topological neural networks, and discuss the implications of these results for modeling biological systems at multiple scales

    Closed Loop Experiment Manager (CLEM)—An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments

    No full text
    There is growing need for multichannel electrophysiological systems that record from and interact with neuronal systems in near real-time. Such systems are needed, for example, for closed loop, multichannel electrophysiological/optogenetic experimentation in vivo and in a variety of other neuronal preparations, or for developing and testing neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess long life cycles in face of rapidly changing computing environments. Finally, they should provide powerful, yet reasonably easy to implement facilities for developing closed-loop protocols for interacting with neuronal systems. Here, we survey commercial and open source systems that address these needs to varying degrees. We then present our own solution, which we refer to as Closed Loop Experiments Manager (CLEM). CLEM is an open source, soft real-time, Microsoft Windows desktop application that is based on a single generic personal computer (PC) and an inexpensive, general-purpose data acquisition board. CLEM provides a fully functional, user-friendly graphical interface, possesses facilities for recording, presenting and logging electrophysiological data from up to 64 analog channels, and facilities for controlling external devices, such as stimulators, through digital and analog interfaces. Importantly, it includes facilities for running closed-loop protocols written in any programming language that can generate dynamic link libraries (DLLs). We describe the application, its architecture and facilities. We then demonstrate, using networks of cortical neurons growing on multielectrode arrays (MEA) that despite its reliance on generic hardware, its performance is appropriate for flexible, closed-loop experimentation at the neuronal network level

    Learning BOLD Response in fMRI by Reservoir Computing

    No full text
    This work proposes a model-free approach to fMRI-based brain mapping where the BOLD response is learnt from data rather than assumed in advance. For each voxel, a paired sequence of stimuli and fMRI recording is given to a supervised learning process. The result is a voxel-wise model of the expected BOLD response related to a set of stimuli. Differently from standard brain mapping techniques, where voxel relevance is assessed by fitting an hemodynamic response function, we argue that relevant voxels can be filtered according to the prediction accuracy of a learning model. In this work we present a computational architecture based on reservoir computing which combines a Liquid State Machine with a Multi-Layer Perceptron. An empirical analysis on synthetic data shows how the learning process can be robust with respect to noise artificially added to the signal. A similar investigation on real fMRI data provides a prediction of BOLD response whose accuracy allows for discriminating between relevant and irrelevant voxels

    Non-parametric temporal modeling of the hemodynamic response function via a liquid state machine

    No full text
    Standard methods for the analysis of functional MRI data strongly rely on prior implicit and explicit hypotheses made to simplify the analysis. In this work the attention is focused on two such commonly accepted hypotheses: (i) the hemodynamic response function (HRF) to be searched in the BOLD signal can be described by a specific parametric model e.g., double-gamma; (ii) the effect of stimuli on the signal is taken to be linearly additive. While these assumptions have been empirically proven to generate high sensitivity for statistical methods, they also limit the identification of relevant voxels to what is already postulated in the signal, thus not allowing the discovery of unknown correlates in the data due to the presence of unexpected hemodynamics. This paper tries to overcome these limitations by proposing a method wherein the HRF is learned directly from data rather than induced from its basic form assumed in advance. This approach produces a set of voxel-wise models of HRF and, as a result, relevant voxels are filterable according to the accuracy of their prediction in a machine learning framework. This approach is instantiated using a temporal architecture based on the paradigm of Reservoir Computing wherein a Liquid State Machine is combined with a decoding Feed-Forward Neural Network. This splits the modeling into two parts: first a representation of the complex temporal reactivity of the hemodynamic response is determined by a universal global "reservoir" which is essentially temporal; second an interpretation of the encoded representation is determined by a standard feed-forward neural network, which is trained by the data. Thus the reservoir models the temporal state of information during and following temporal stimuli in a feed-back system, while the neural network "translates" this data to fit the specific HRF response as given, e.g. by BOLD signal measurements in fMRI. An empirical analysis on synthetic datasets shows that the learning process can be robust both to noise and to the varying shape of the underlying HRF. A similar investigation on real fMRI datasets provides evidence that BOLD predictability allows for discrimination between relevant and irrelevant voxels for a given set of stimuli

    Decoding the Formation of New Semantics: MVPA Investigation of Rapid Neocortical Plasticity during Associative Encoding through Fast Mapping

    Get PDF
    Neocortical structures typically only support slow acquisition of declarative memory; however, learning through fast mapping may facilitate rapid learning-induced cortical plasticity and hippocampal-independent integration of novel associations into existing semantic networks. During fast mapping the meaning of new words and concepts is inferred, and durable novel associations are incidentally formed, a process thought to support early childhood’s exuberant learning. The anterior temporal lobe, a cortical semantic memory hub, may critically support such learning. We investigated encoding of semantic associations through fast mapping using fMRI and multivoxel pattern analysis. Subsequent memory performance following fast mapping was more efficiently predicted using anterior temporal lobe than hippocampal voxels, while standard explicit encoding was best predicted by hippocampal activity. Searchlight algorithms revealed additional activity patterns that predicted successful fast mapping semantic learning located in lateral occipitotemporal and parietotemporal neocortex and ventrolateral prefrontal cortex. By contrast, successful explicit encoding could be classified by activity in medial and dorsolateral prefrontal and parahippocampal cortices. We propose that fast mapping promotes incidental rapid integration of new associations into existing neocortical semantic networks by activating related, nonoverlapping conceptual knowledge. In healthy adults, this is better captured by unique anterior and lateral temporal lobe activity patterns, while hippocampal involvement is less predictive of this kind of learning
    corecore